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5.1

Pro ject i le ,  C ircular  and Per iodic  Mot ion

C H A P T E R  0 5

M O T I O N  I N  T W O  D I M E N S I O N S
The previous chapters have considered motion mainly in a straight line. This is called recti-
linear motion (Latin rectus = ‘straight’ and linea = ‘line’). This chapter will be looking at
motion in two dimensions, that is, curvilinear motion.

Projectiles from cannons, a shotput, throwing a cricket ball, motorcyclists jumping rows
of cars; and ballet dancers all involve curvilinear motion.

But there are facts and fallacies about such motion:
• Before Galileo, universities taught that when a cannon ball ran out of ‘impetus’ it

would stop in its path and fall vertically to Earth. That’s not true, is it?
• Soldiers in war have often reported that enemy bullets fired from miles away fell

vertically in to their trenches. How can that be true?
• In the Olympic Hammer Throw, the hammer continues in a circular path for a fraction

of a second after it is let go. True or false?
• Bombs and bullets fired at 45° have the greatest range. Well, cricket balls do; so

should bullets.
• A pendulum will swing forever in a vacuum because air resistance is nil. True or

false?
To make sense of these ideas, it helps if you have first-hand knowledge of some curvilinear
motions.

A c t i v i t y  5 . 1 T H I N G S  T H AT  D O N ’ T  G O  I N
S T R A I G H T  L I N E S

1 Watch a microwave oven in operation.

(a) Does the carousel rotate clockwise or anticlockwise? Does everyone else in
the class get the same result?

(b) Measure the ‘period’ of the carousel. This is the time for one complete 
revolution. Time the carousel for five turns to get better accuracy. 
Is 12 seconds about the class average?

2 If you have a CD player and still have the manual, look up the rotation speed of
the disk. Is it constant or is there a range of speeds?

3 Billiard players talk about putting ‘English’ on the ball. What does that mean?

4 The javelin design was changed in 1998 so that it couldn’t be thrown as far.
Consult the Guinness Book of Records to find out how this was achieved and by
approximately how much its range was reduced.
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5.2P R O J E C T I L E S
Good examples of projectiles are 1. a rock thrown straight out from the top of a cliff; 2. a
cricket ball thrown across a field. (See Figure 5.1.) The word projectile comes from the Latin
jacere meaning ‘to throw’ and pro meaning ‘forward’. Projectile motion can be separated into
two components — a vertical (up and down) motion and a horizontal motion. The vertical
motion is the same as discussed in Chapter 2 — the ball is under the influence of gravity 
and accelerates at –10 m s–2 directed downward (the negative direction). In the horizontal
direction, there are no net forces acting on the object so the velocity is constant. In all cases
we are assuming air resistance is negligible. If you are to ever take air resistance into account
in a problem you will be specifically told to do so. The path of a moving object is called its
trajectory (Latin trajectus = ‘crossing’ or ‘passage’).

Note: in all examples that follow, the positive direction is upward and the negative direction
is downward. You may choose a different convention in your problem-solving. It’s up to you
and your teacher.

— Horizontal  project ion
This is the example of the rock thrown off the cliff. In this case the value of vh equals the 
initial horizontal velocity (uh), which remains constant. The vertical velocity starts at zero 
(uv = 0) but increases as time passes.

Example
A golf ball is thrown horizontally off a cliff at a velocity of 20 m s–1 and takes 4 s to reach the
ground below. Calculate (a) the height of the cliff; (b) how far the ball will land from 
the base of the cliff; (c) the impact velocity of the ball.

Horizontal projection
— a rock thrown off
a cliff

Angled projection — a
cricket ball thrown
across a field

θ

Figure 5.1

Vh

Vh

Vh

Vh

Vv

Vv

Vv

Figure 5.2
The horizontal velocity remains

constant while the vertical
velocity increases.
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Solution
(a) In the vertical direction:

(b) In the horizontal direction:

(c) Impact velocity is the sum of horizontal velocity, which remains constant at 
20 m s–1, and the final vertical velocity. This is a vector summation.
The vertical velocity on impact, vv = uv + at = 0 + –10 × 4 = –40 m s–1.

Using Pythagoras’s theorem:

The angle of impact, θ, can be found from tan θ = = 2.0.

Hence θ = 63°.

— Q u e s t i o n s
1 A motorcycle is driven off a cliff at a horizontal velocity of 25 m s–1 and takes 5 s 

to reach the ground below. Calculate (a) the height of the cliff; (b) the distance
out from the base of the cliff that the motorcycle lands; (c) the impact velocity.

2 A rock is thrown horizontally at 8 m s–1 off a 100 m high cliff. Calculate (a) how
long it takes to hit the ground; (b) its impact velocity; (c) how far out from the
cliff it lands.

40
20

uv = 0 m s–1, a = –10 m s–2, t = 4 s, sv = ?

sv = uvt + at2

= 0 + × –10 × 42

= –80 m

1
2

1
2

uh = 20 m s–1, a = 0 m s–2, t = 4 s, sh = ?

sh = uht + at2

= 20 × 4 + 0

= 80 m

1
2

40 m/s
impact velocity

45 m/s

20 m/s

θ

Figure 5.3

v2 = 402 + 202 = 1600 + 400

v = √2000 = 45 m s–1
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5.3P R O J E C T I O N  AT  A N  A N G L E
Not all objects are thrown in a horizontal direction. Cannonballs, footballs and netballs, for
example, are often projected upward at an angle.

To study projectile motion, we let θ be the angle at which the object is thrown relative
to the horizontal. This is called the elevation angle.

The motion of the projectile is a parabola because the vertical displacement varies as a func-
tion of t2 (i.e. sv = uvt + at2) as it is uniformly accelerated motion whereas the horizontal
displacement varies with just t (i.e. sh = vht) as it is constant velocity. The horizontal
displacement is called the range.

The impact velocity will have the same magnitude as the launch velocity, but be 
directed in a general downward direction not upward as at launch (Figure 5.6).

The horizontal component of velocity remains constant for the duration of the flight. The
vertical component at launch equals the vertical component at impact but in the opposite
direction. Recall from an earlier chapter that for vertical motion, initial speed equals final
speed for an object returning to the same horizontal level.

1
2
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initial
velocity v

v cos θ
θ

v sin θFigure 5.4

vh

vv

Figure 5.5
The vertical velocity changes 
while the horizontal velocity 

stays constant.

impact
velocity v

v cos θ

θ

v sin θ

Figure 5.6

N O V E L  C H A L L E N G E

A flea can jump 18.4 cm high 

when jumping at 45º. How far

horizontally will it go?
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— Some old ideas chal lenged
Until the time of Galileo, the motion of a projectile was based on the teachings of Greek
philosopher Aristotle. For example, Albert of Saxony (1316–90), rector of Paris University,
taught that the trajectory of a projectile was in three parts: firstly, the upward motion where
the initial impetus suppressed gravity; secondly, a period where the projectile’s impetus and
gravity were compounded; and thirdly, when gravity and air resistance overcame the natural
impetus. This produced a trajectory as shown in Figure 5.7.

It wasn’t until 1638 that the trajectory of a projectile could be described mathematically.
Galileo’s description proved to be correct and has been the basis of mechanics since. The
mathematical techniques that Galileo pioneered, later refined by Newton, can be seen in the
examples that follow.

Example
The L16 mortar is a weapon currently used by Commonwealth defence forces. If a mortar shell
was fired at 200 m s–1 at an angle of 40° to the ground, calculate:

(a) the initial vertical and horizontal components of the velocity;
(b) the maximum height reached;
(c) the time of flight (total time taken from start to finish);
(d) the horizontal range;
(e) the impact velocity.

Solution
Let the upward direction be positive: a = –10 m s–2.

(a) • Vertical: uv = v sin θ = 200 × sin 40° = +129 m s–1 in positive direction (up).
• Horizontal: uh = v cos θ = 200 × cos 40° = 153 m s–1.

(b) At maximum height vv = 0 m s–1.

(c) Time of flight can either be calculated by (i) determining the time taken to
reach maximum height (v = 0) and doubling it; or (ii) determining time taken
until final vertical velocity is equal and opposite to initial vertical velocity; or
(iii) until vertical displacement is zero again.

By (i) vv = uv + at, hence t = = = 12.9 seconds. Total time = 25.8 s.

By (ii) vv = uv + at, hence t = = = 25.8 s.

By (iii) sv = uvt + at2, hence 0 = +129t + –5t2; 5t = 129; hence t = 25.8 s.

(d) Horizontal range = horizontal component of initial velocity × time of flight.

(e) The impact velocity will have the same magnitude as the initial velocity, but will
be directed generally downward not up. The angle of impact (θ) will be the same
as the angle of elevation (40°). Thus, the impact velocity is 200 m s–1 at an
angle 40° to the horizontal.

1
2

–129 – (+129)
–10

v – u
a

0 – (+129)
–10

v – u
a
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(vv)2 = (uv)2 + 2asv, hence sv = = = +832 m
02 – (+129)2

2 × –10
v2 – u2

2a

sh = vh × t = 153 × 25.8 = 3947 m

Figure 5.7
Until the 1600s, people thought
that projectile motion was more
like this.

N O V E L  C H A L L E N G E

Acapulco cliff divers jump off a 

cliff 35 m high and just miss rocks

5 mm out from the base.

What is their minimum push-off

speed?

N O V E L  C H A L L E N G E

On the Moon, astronauts hit a 

golf ball 180 m. If they hit the

same ball on Earth with the same

speed and angle, how far will 

it go (neglect air resistance)? 

Note gmoon = 1.6 m s–2. By the 

way, there are three golf balls still

on the Moon. Learn this off by

heart — it could be useful.
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— Complementary angles of  e levat ion
The range of a projectile fired at an elevation angle of 40° will also be the same if it is fired
at 50°. The angles 40° and 50° are called complementary angles because they add up to
90°. Other examples of complementary pairs are: 30° and 60°; 20° and 70° etc. In other
words, the range of a projectile will be the same for elevation angles of θ and 90° – θ. It is
interesting that sin θ = cos (90° – θ).

A c t i v i t y  5 . 2 T O Y  C A N N O N
If you have access to a toy cannon, try firing some projectiles at complementary angles
and collect some data. Perhaps you could design a device that uses a rubber band, a
mousetrap or a spring to fire small objects up an incline. Then you could vary the 
elevation angle. Whatever you do, you should aim to confirm or refute the above 
assertion about complementary angles.

Example
In the earlier example, an elevation angle of 40° produced a range of 3947 m. If the theory
is correct, then an angle of 50° should produce the same range.

(a) Prove this assertion.
(b) By how much do the times of flight differ?
(c) Do the impact velocities differ? (The initial velocity was 200 m s–1.)

Solution
(a) Let a = –10 m s–2.

Impact velocity in vertical direction (vv) = –uv = –153 m s–1.
Hence, the range is identical.

(b) The times of flight were: for 40°, t = 25.8 s; for 50°, t = 30.6 s; difference was 4.8 s.
(c) Impact velocities are different but only in direction not magnitude.

For 40°, vimpact = 200 m s–1 at 40° to horizontal.
For 50°, vimpact = 200 m s–1 at 50° to horizontal.

— Maximum range
It was the invention of the cannon in the late 1400s that created a new form of warfare. War
at sea using cannons became more common and defence using medieval castles became 
obsolete. Medieval mechanics also became obsolete. Until then, the motion of a projectile
was only of philosophical interest because they all thought they knew how projectiles moved
— after all, Aristotle described the motion over 1000 years earlier and no one was prepared
to challenge his theories. The theories weren’t challenged until they had to be tested in war-
fare and were found wanting. Aiming was very much a hit-or-miss affair; there was no way of
determining the trajectory or even the angle of launch in advance. It wasn’t until self-taught
engineer Niccolo Fontana published the results of his experiments in 1546 that gunners
realised a 45° angle of elevation would give the maximum range.

In Figure 5.8 the maximum range can be calculated by letting θ = 45°. In this case the
horizontal and vertical components of the initial velocity both equal 141 m s–1, the time of
flight equals 28.2 s and the maximum range works out to be 3976 m.
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uv = v sin θ = 200 × sin 50° = +153 m s–1 (upward)
uh = v cos θ = 200 × cos 50° = 129 m s–1

vv = uv + at, hence t = (vv – uv/a) = (–153 – +153)/10 = 30.6 s
sh = vh × t = 129 × 30.6 = 3947 m

θ
30° 40° 45°
60° 50°

Figure 5.8
An elevation angle of 45° produces
the maximum range in most cases.

N O V E L  C H A L L E N G E

The following graphs show how

the range and altitude of a 

projectile changes with 

elevation angle in the 
presence of air. Plot a graph 

of maximum altitude versus 

elevation angle and predict

maximum altitude for 

an angle of 90°. 

Should the graph pass through

the origin (0,0)? Why?
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A c t i v i t y  5 . 3 C O M P U T E R  S I M U L AT I O N
If you have access to a computer and spreadsheet you may like to use this exhaustive
method of determining the range at different elevations and the elevation for maximum
range.

1 The horizontal range (R) can be found by a single formula deduced in the follow-
ing manner:
(a) Horizontal range sh = u cos θ × t = R; maximum vertical height 

vv = u sin θ + at/2.

(b) Eliminating t between the equations yields: R = sin θ cos θ.

(c) Knowing the identity sin 2θ = 2 sin θ cos θ, we obtain R = sin 2θ.

2 Set up a spreadsheet and calculate the range for all values of θ from 0° to 90°
using a nominal velocity of 100 m s–1.

3 Is the maximum range achieved at an elevation of 45°?

4 Do complementary angles produce the same range? Give an example.

— More complex s i tuat ions
If the projectile travels to a point lower than its starting point then the situation is more
complex. Imagine throwing a ball up and out off a cliff. Another complex situation arises
when the projectile lands higher up than the starting point, for example throwing a book to
someone up on a verandah or shooting a basketball into the hoop.

Example: Lower final horizontal displacement
A cannon is fired from the edge of a cliff, which is 60.0 m above the sea (Figure 5.9(a)). 
The cannonball’s initial velocity is 88.3 m s–1 and it is fired at an upward angle of 34.5° to
the horizontal. Determine: (a) the time the ball is in the air; (b) the impact velocity; (c) the
horizontal distance out from the base of the cliff that the ball strikes the water.

Solution
• Vertical component of initial velocity uv = 88.3 sin θ = +50.0 m s–1 (positive is up).
• Horizontal component of initial velocity uh = 88.3 cos θ = 72.8 m s–1.
• The final vertical displacement sv = –60.0 m
• Initial vertical velocity uv = +50.0 m.
• Vertical acceleration a = –10 m s–2.

The negative solution is not reasonable, therefore the time of flight is 11.1 s.
(b) The horizontal velocity vh remains constant at 72.8 m s–1.

u2

a

2u2

a
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s = ut + at2

–60 = +50t + (–10)t2

5t2 – 50t – 60 = 0

t2 – 10t – 12 = 0

t = –(–10) ± √(–10)2 – 4 × 1 × –12
2 × 1

t = 11.1 s or –1.1 s

1
2

1
2

cannon

60 m

(a)

34.5°

Figure 5.9(a)

N O V E L  C H A L L E N G E

A really hard one! A cannonball

is fired and, after travelling 5 m

horizontally, it has reached half

its maximum height.

At what horizontal distance 

will it land?

hmax

2

sH (m)0 5 ?

hmax

N O V E L  C H A L L E N G E

The world speed record for an

archery shot over 100 m is 

1.64 seconds (220 km h–1).

Calculate the elevation angle 

of the arrow so that it hits the

bull’s eye at the same height as

that from which it was fired

(shoulder high).
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The vertical component of the velocity will change:

The total velocity is the vector sum of the two components (Figure 5.9(b)).
Using Pythagoras’s theorem:

• Impact velocity = √612 + 72.82 = 95 m s–1.

• Using trigonometric ratios: θ = tan–1 = 40°.

(c) Horizontal distance (sh) = horizontal component of velocity (vh) × time of flight (t).

Note: you can’t use the formula R = sin 2θ because the projectile is not landing

at a position level with where it was thrown. The range formula is assuming the
vertical displacement is zero.

— Q u e s t i o n s
3 A tennis ball close to the ground is hit by a racquet with a velocity of 30 m s–1

at an angle of 25° to the horizontal. Find (a) the initial vertical and horizontal
components of the velocity; (b) the maximum height reached; (c) the time of
flight; (d) the horizontal range.

4 A football is kicked off the ground at an angle of 30° to the horizontal. It moves
away at 23.0 m s–1. Calculate (a) the vertical velocity after 1.0 s; (b) the velocity
of the ball after 1.0 s; (c) the maximum height reached; (d) the time of flight;
(e) the range of the ball.

5 A rock is thrown off a 100.0 m cliff upward at an angle of 20° to the horizontal.
If it has an initial velocity of 15 m s–1 and strikes the rocks below, calculate 
(a) the time of flight; (b) the impact velocity; (c) how far out from the base 
of the cliff the rock strikes the ground.

6 A difficult one! A basketball player shoots a ball at an angle of 55° into a hoop
on a post 4.3 m away (Figure 5.10). If the ball is released from a height of 2.1 m
and lands in the net, which is 10 feet (3.0 m) off the ground, calculate the 
initial speed of the ball for this foul shot to be successful.

7 Emmanuel Zacchini was a famous American ‘human cannonball’. In 1940 he
attempted to clear a Ferris wheel 18 m high after being launched from a cannon
at an elevation angle of 53° and a muzzle velocity of 26.5 m s–1.
(a) If his point of projection from the cannon was 3.0 m above the ground, did

he clear the Ferris wheel?
(b) How far away from the cannon should the net have been placed?

— The effect  of  a ir  on project i les
Aristotle argued that once a projectile ran out of impetus it would fall vertically from the sky.
Galileo argued that this was wrong — the trajectory would be parabolic. Galileo was right —
or was he? In the discussion so far we have ignored air resistance but when it is taken into
account the trajectory is different. Aristotle is almost right but for the wrong reasons. At 
low speeds air resistance is negligible. But at greater speeds it becomes considerable. 
For instance, a flyball hit at an angle of elevation of 60° at 45 m s–1 will have different 
trajectories in air compared with those in a vacuum. Table 5.1 summarises the differences.

u2

a

61
72.8
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sh = 72.8 × 11.1 = 808 m from base of the cliff

4.3 m

2.1 m

55°

3.0 m

Figure 5.10
For question 6.

θ

Impact
velocityvv =

61 m/s

vh = 72.8 m/s

Figure 5.9(b)

vv = uv + at
= +50 + –10 × 11.1
= –61 m s–1 (downward)
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Ta b l e  5 . 1 T R A J E C T O R I E S  O F  A  B A S E B A L L

Figure 5.11 shows the difference between the trajectory of a ball as predicted by a 
computer model (a) and that of a bullet as tracked by ballistics experts on a rifle range (b).
The differences come about because bullets have more complicated motions than a round ball
in flight.

Trial-and-error has shown that the maximum range for a bullet fired in air is achieved at
an elevation of 33°, a rough rule-of-thumb that works for most guns. As a crude approxima-
tion, the angle of descent is 2 times the angle of launch, so for a 33° elevation of fire, the
bullet will arrive at 82.5°, or very nearly vertical. Any greater elevation of the gun merely
means that the bullet will actually drop vertically and the last part of the flight will add 
nothing to the range. So the war veterans were probably right — bullets did fall on them 
vertically from the sky (and were just as lethal).

— Exterior  bal l is t ics
Once a bullet leaves the muzzle of a gun, the laws of exterior ballistics take over as we 
have seen above. Ballistics comes from the Greek word ballein meaning ‘to throw’. Modern
high-speed photography enables physicists, chemists and engineers to study the explosion of
propellant and the resulting motion of a projectile.

Typically, the bullet exits the muzzle at about 800 m s–1, spinning at some 3000 revolu-
tions per second. At first, it goes off down the range with a slight wobble, which straightens
out after about 100 m, whereon it settles down to the main part of its flight, nose first, spin-
ning steadily. This is the useful part of the bullet’s life and it is intended that the bullet
should hit its target during this stage. In the last part of its flight, the final slowing occurs
and the bullet ‘drops out of the sky’. The spinning tries to keep the bullet pointing straight
ahead but as it falls toward Earth, the bullet cuts through the air sideways and air drag
becomes great (Figure 5.12).

1
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Range 100 m 177 m
Maximum height 53 m 77 m
Time of flight 6.6 s 7.9 s

PATH A (AIR) PATH B (VACUUM)

B

(a) (Flyball) (b) (Bullet)

60°

A
in vacuum in vacuum

in airin
air

v0

x

Figure 5.11
(a) The path of a flyball calculated
taking air resistance into account
(A) and in a vacuum (B). 
(b) The dotted line is a trajectory
of a bullet in a vacuum. The solid
line shows how it is modified by 
air drag.

Orig
inal d

ire
ctio

n Figure 5.12
An exaggerated view of a wobbling
(overstable) bullet, showing how it
can fly almost broadside at the end
of the trajectory.
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5.4

The bullet begins to tumble end-over-end and by this stage has a very unpredictable
trajectory and is too unreliable. Rifles generally have an effective range of 400–900 m,
although weapons like the AR15 Armalite (USA) are designed for modern jungle warfare and
are only accurate to 450 m but have an enormous muzzle velocity of 990 m s–1 to 
compensate. Because the bullet is tumbling at the end of this distance, it tears apart what-
ever it hits.

U N I F O R M  C I R C U L A R  M O T I O N
It really wasn’t until the 1500s that people began to believe that the Earth rotates on its own
axis. Until then, the rate of rotation of objects was of little consequence. Today, rotation and
its measurement is of fundamental importance to society, whether it is the rotation of
microwave carousels, CDs, car tyres, engines, sewing machines, nuclei or orbiting satellites.
In this section we will be looking at circular motion, that is, motion in a circle.

— A bal l  on a str ing
Imagine you are whirling a ball in a horizontal circle on a piece of string. By Newton’s first
law of motion, the ball is attempting to travel in a straight line but is stopped from doing so
by your pull on the string. As your hand is at the centre of the circle in which the ball moves,
the force on the string and hence on the ball is always towards your hand and hence towards
the centre. This force is called a centripetal force (Latin centrum = ‘centre’, petere = ‘seek’).
When the object travels at constant speed in a circle, it is said to be undergoing uniform cir-
cular motion. Notice that its direction is continually changing so its velocity is not constant.

Figure 5.13 shows the motion of a ball moving in a circle of radius r at constant speed.
The velocity at any point on the circle is a tangent to the path at that point. For instance, at
position A, the velocity vector v1 points up the page. At point B, the velocity vector v2 points
to the left but still has the same length as the speed remains the same. As the direction of
the velocity has changed, the ball is said to be accelerating (centripetal acceleration). The
magnitude and direction of this acceleration can be calculated by determining the change in
velocity:

When we subtract a vector quantity, we turn it into an addition by reversing the direction of
the initial vector and adding the arrows head to tail. Hence: ∆v = v2 + –v1. As can be seen
from Figure 5.14, the resultant is directed to the centre of the circle, hence ‘centre seeking’.

Using similar triangles, it can be shown that the centripetal acceleration is
given by:

where r is the radius of the circular path in metres. Note that the vector quantities a and v
are no longer typed in bold. This is because they are not in the same direction. The acceler-
ation is toward the centre whereas the velocity is at right angles to this.

The ball is experiencing a centripetal force to keep it moving in a circle. This is provided
by the tension in the string. Using Newton’s second law of motion (F = ma) we get:
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Change in velocity (∆v) = final velocity (v2) – initial velocity (v1).

ac = v2

r

Fc = m v2

r

N O V E L  C H A L L E N G E

When a wheel rolls along, is any

point at rest?

Figure 5.13

θ
v1

v2
B

A

Figure 5.14

−
v2 v1

θ

−v1

∆v
resultant

=

v2
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— A car going around a curve safely
A racing car travelling around a circular track is similar to a ball being whirled around on a
string. A vehicle going round a bend on a level road can be viewed also as going on a circu-
lar path. The sideways friction between the tyres and the road provides the force needed to
stop the car just going straight ahead. The friction provides the centripetal force. If the car
hit a wet patch all of a sudden, the friction would be reduced and insufficient centripetal
force could be provided so the car would tend to go straight ahead, possibly even spinning
out of control.

Recall from earlier work that friction (Ff) is proportional to the force pressing the surfaces
together (the normal reaction FN): Ff = µFN. On horizontal ground, the normal reaction is equal
to the object’s weight (Fw or mg).

If centripetal force is provided by the friction we can combine the two equations:

The maximum safe speed to go around a curve is represented by vmax in the final equa-
tion above. The mass of the car doesn’t come into the equation so in this case has no effect
on the safe speed. Big cars have the same maximum safe speed as small cars.

— Revolut ions per second
You probably don’t know the speed of the Moon about the Earth in metres per second or even
kilometres per hour. But you would know that it makes one revolution in just over 27 days.
Engine speeds too are usually expressed in a number of revolutions per minute (rpm). At 
idle, they might turn at 750 rpm and at cruising speed may reach say 4000 rpm. It depends
on the car.

The distance covered in one revolution by an object in uniform circular motion at a 
distance r from the centre is equal to the circumference of the circle: s = 2πr. If the time
taken to complete one revolution (called the period) is T, then:

This velocity is called the tangential velocity (Latin tangere = ‘to touch’). It is sometimes
called radial velocity. Angular velocities will be dealt with later.

Combining equations we get: ac = Fc =

Example
A motorcycle and rider with a total mass of 1250 kg are travelling around a circular track of
radius 50 m at a constant speed of 40 m s–1. Calculate (a) the centripetal acceleration; 
(b) the centripetal force; (c) the time it takes to complete one lap.

Solution

m4π2r
T2

4π2r
T2
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Fc = mv2
and Ff = µFN = µmg, then mv2

= µmg
r r

i.e. vmax = √µgr

v = s = 2πr
t T

(a) ac = = = 32 m s–2.

(b) Fc = m = 1250 × 32 = 40 000 N.

(c) v = , or T = = = 7.85 s.2 × 3.14 × 50
40 

2πr
v

2πr
T

v 2

r

402

50
v2

r

N O V E L  C H A L L E N G E

Some coins were placed on a

turntable in a line from the 

centre to the edge. The

turntable was then turned on.

What do you predict will happen?

N O V E L  C H A L L E N G E

How many revolutions will coin A

do while rotating around coin B?

Try it. You’ll be surprised.

A

B

N O V E L  C H A L L E N G E

The government steamer Relief

attended the lighthouses along

the Queensland coast from 1899

to 1952. To cope with the huge

spray of seawater on the 

windows of the steering cabin, 

a novel approach was taken. 

The windscreen in part consisted

of a circular glass disk about

40 cm diameter that spun at

high speed. 

How did this keep the seaspray off

the window? Why couldn’t they use

windscreen wipers as in a car?

Propose two advantages and two

disadvantages of this sytem 

compared with wipers.
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A c t i v i t y  5 . 4 T H E  W H I R L I N G  S T O P P E R
Tie a rubber stopper to a piece of string and whirl it in a horizontal circle above your
head. See if you can let it go so that it will hit the wall of your room at right angles.
Whereabouts in its circular travel did you have to let it go to achieve this? Which law 
of motion is confirmed by this?

Example 1
In an investigation of uniform circular motion, a student whirled a 50 g rubber stopper above
his head in a horizontal circle of radius 1.2 m (Figure 5.15).

The string was passed through a piece of glass tubing and a set of slotted brass masses
was suspended off the end of the string. It required 150 g of hanging mass to provide enough
force to keep the rubber stopper whirling in a circle at a constant speed. Use g = 9.8 m s–2

and calculate (a) the centripetal force provided by the hanging mass; (b) the tangential
velocity of the stopper; (c) the period of the rubber stopper; (d) the time taken for 10 
revolutions of the stopper.

Solution

Example 2
A car of mass 1750 kg is rounding a curve of radius 70 m at a speed of 20 m s–1. The surface
is dry and the coefficient of friction between the tyres and the road is 0.65. The driver then
hits a wet patch on the curve where the coefficient of friction is 0.25. Calculate (a) how
much below the safe maximum speed the car is doing on the dry section of the curve; 
(b) whether the driver has to slow down to safely travel along the wet section and, if so, to
what safe maximum speed; (c) would a smaller and lighter car allow the driver to go faster
around the curve?

Solution
(a) vmax = √µgr = 0.65 × 10 × 70 = 21.3 m s–1; the driver is 1.3 m s–1 below this speed.
(b) vmax = √µgr = 0.25 × 10 × 70 = 13.2 m s–1; the driver has to slow down to this speed.
(c) vmax is independent of mass, so a lighter car would make no difference.

— Cambered surfaces
Some curved motor car racing tracks are cambered or banked, that is, tilted in towards the
centre of the curve. In this case the component of the vehicle’s weight down the slope helps
to provide centripetal force so the frictional force need not be as great. Alternatively, the car
can safely travel at much higher speeds. Road engineers often camber roads the ‘wrong’ way
for purposes of drainage. You could imagine the effect this has on maximum safe speeds?

Some other examples
• For a space shuttle and satellites orbiting the Earth or planets orbiting the Sun, the

centripetal force is provided by gravitational forces. This will be dealt with in a later
chapter.
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(a) The centripetal force is provided by the weight of the hanging mass:

Fc = Fw = mg = 0.150 kg × 9.8 m s–2 = 1.47 N

(b) Fc = m v2, or v2 = Fcr = 1.47 N × 1.2 m = 35.3
r m 0.050 kg

v = √35.3 = 5.9 m s–1

(c) T =  2πr = 2 × 3.14 × 1.2 = 1.3 s
v 5.9

(d) Time for 10 revolutions = 10 revolutions × 1.3 s/rev = 13 s.

Figure 5.15

tube 1.2 m

rubber
stopper

paperclipfishing
line

slotted
masses
150 g

N O V E L  C H A L L E N G E

A wheel is rolling along with

constant speed and a lump 

of mud is thrown off its 

hindmost point.

Will it touch the wheel again?

?

mud
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5.5

• In a gravitron or rotor at an amusement park, the person is ‘pressed’ against the
wall. Actually, the person is trying to travel in a straight line but the wall pushes on
the person (the centripetal force) and the person pushes back. The centripetal force
is the normal force directed radially inward on the rider. At high speeds, this normal
force becomes sufficiently great to provide enough friction to stop the rider sliding
down the wall under the influence of gravity.

• A spin-dryer works on a centripetal force principle. When the tub is spun at high
speed, the force of attraction between the water and the clothes is insufficient to
keep the water moving in a circle. The liquid moves tangentially and out through the
holes in the sides of the tub.

A c t i v i t y  5 . 5 S P I N - D R Y E R  C H A M P I O N S H I P S
1 Spin-dryers go pretty fast — too fast to see with the naked eye. Design a

method to measure the speed of a spin-dryer in revolutions per minute (rpm).
You don’t have to build it or have the parts at home or school; just design the
procedure and instrumentation.

2 If your method is simple, do it and report the result to the class.

— Q u e s t i o n s
8 A car of mass 1900 kg is travelling at a constant speed of 25 m s–1 around a 

level corner of radius 50 m. Calculate (a) the centripetal acceleration; (b) the
centripetal force acting on the car.

9 An aeroplane is travelling at 200 m s–1 in a circular path of radius 3000 m. Calculate
(a) the centripetal acceleration of the plane; (b) the time to complete one revolution.

10 The Moon takes a period of 27.3 days to complete one orbit of the Earth. If we
consider the path to be circular then its average radius is 3.84 × 108 m from the
centre of the Earth. Determine (a) the circumference of the Moon’s path; 
(b) the speed of the Moon; (c) the Moon’s centripetal acceleration; (d) the 
centripetal force (the Moon’s mass is 7.34 × 1022 kg).

11 Spin-dryers revisited:
(a) Why do clothes that comes out of a spin-dryer still feel damp?
(b) Would continued spinning at the same speed get rid of more water?
(c) Could you spin them completely dry?
(d) How does the water get from the clothes in the middle to the outside (is

there a more efficient way)?
12 A mass of 150 g is whirled in a horizontal circle of radius 95.0 cm on a string. If 10

revolutions at constant speed take 4.5 seconds, calculate the tension in the string.

N O N - U N I F O R M  C I R C U L A R  M O T I O N
The previous section dealt with uniform circular motion. This can be easily achieved by
objects travelling in horizontal circles. When they travel in vertical circles it is difficult to
keep the speed constant and this is called non-uniform circular motion. Two common exam-
ples of this are a ball on a string and an aircraft loop-the-loop. Devices that have stiff radial
arms such as a bicycle wheel, a ferris wheel or a pulley cannot be considered non-uniform as
they are completely rigid and all points on the circumference travel at the same speed.

When a ball is swung on the end of a string in a vertical circle, the speed of the ball is
greatest at the bottom of the circle and slowest at the top of the circle. Hence, the centri-
petal acceleration is smallest at the top and greatest at the bottom. In the following, the
symbol T is used to represent the tension in the string, whereas Fw represents the weight of
the ball (= mg). Refer to Figure 5.17.
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tension string
model
aircraft

path of
motion

Figure 5.16
Looping the loop in a vertical circle.
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• At the top, the string doesn’t have to pull as hard (Fc) because the weight is helping
it pull down:

• At the side, the weight has no effect on the tension:

• At the bottom, the string has to pull harder because it has to support the weight of
the ball as well:

The apparent weight of the ball at the top or bottom is given by T.

— Minimum veloci ty
The minimum velocity needed to keep a ball in a circular orbit is found to be the velocity at
the instant when the string begins to slacken (i.e. when T = 0) at the top. This is when:

— Maximum veloci ty
The maximum velocity occurs at the bottom of the path:

Example 1
The breaking strain of a string is 50 N. A 250 g ball is whirled in a vertical circle of radius 
1.2 m. Calculate (a) the minimum velocity needed to keep the ball in orbit; (b) the maximum
speed that the ball can have before the string breaks.

Solution
(a) vmin = √gr = √10 × 1.2 = 3.5 m s–1.
(b) Maximum tension occurs at the bottom of the ball’s path:

Example 2
A stunt pilot is diving his plane vertically downwards at a velocity of 200 m s–1 when he pulls
out of the dive and changes his direction to a circular path of radius of 1000 m. If his mass
is 70 kg and he continues to maintain constant speed in the circle, (a) what is the maximum
centripetal acceleration he experiences; (b) what is the maximum force that his seat will
exert on him? (c) If pilot ‘blacks-out’ when the acceleration is greater than 3g, will he stay
conscious? (d) At what circular path radius would he be liable to black out?
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Figure 5.17
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Fc = mv2
= T + Fw or T = Fc – Fwr

Fc = mv2
= T

r

Fc = mv2
= T – Fw or T = Fc + Fwr

mv2
min = T + Fw = 0 + Fw = mg

r

v2
min = gr so vmin = √gr

mv2
max = T – Fwr

mv2
max = T – Fw = 50 – 0.25 × 10 = 47.5 N

r

v2
max = 47.5 × 1.2 = 228, hence vmax = √228 = 15 m s–1

0.25

I N V E S T I G AT I N G

Many factories, laboratories and

industries use centrifuges. Locate

two places that use centrifuges

and write a report comparing 

and contrasting their uses and 

performances.
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5.6

Solution

(a) Maximum acceleration (at bottom of path) ac = = = 40 m s–2.

(b) At bottom of loop, the seat provides the equivalent of the tension:

(c) ac = 40 m s–2. The number of ‘g’ this is equal to is 40 m s–2 ÷ 10 m s–2 = 4 ‘g’. This is
greater than 3g so the pilot will black out.

(d) To achieve 3g (30 m s–2), the radius can be calculated: 

ac = , hence r = = = 1330 m.

Even at this radius, the pilot may black out for a few seconds. Too tight a loop or
too high a speed could cause the pilot (and crew) to black out for much longer.
This could cause lack of control of the aircraft, death, or both. Some stunt!

Modern military aircraft typically have g limits of around +9.5 to –5.5 g, although these
boundaries are continually being pushed back. Sensors are fitted into most cockpits to allow
the pilot to monitor g values to avoid overstressing the airframe. For additional safety and to
cope with crash impacts, cockpit interiors are designed to withstand 20 g in any direction.
Ejector seats and escape pods may suffer instantaneous loads (for about 0.1 s) in excess of
30 g. The requirement is that a seat shoots a pilot from an aircraft at zero forward speed and
zero altitude (the so-called ‘zero–zero’ seat) to an altitude at which the parachute can open
safely. Alternatively, the seat must be able to clear the tailplane of an aircraft travelling at
high speed. The record for a human experiencing g-loading is around 86 g by the occupant 
of a rocket-sled. By comparison, civilian airlines experience a modest 1.5 g during take-off
acceleration.

The world record for loops is held by David Childs (USA). He did 2368 loops in a Bellanca
Decathlon plane over the North Pole on 9th August 1986. Imagine having ‘Crazy Dave’ in your
physics class.

— Q u e s t i o n s
13 A pilot is performing aerial acrobatics at an air show. He drives around a vertical loop

of radius 600 m (Figure 5.18). What is the minimum speed at the top of the loop?
14 A 75 kg pilot flies his plane in a vertical circle of radius 600 m and at the bottom

of the loop he is travelling at 120 m s–1.
(a) What is the force of the seat on the pilot at this point?
(b) What is the acceleration in m s–2?
(c) If he is known to black out at 5 ‘g’, would he black out at the bottom of the loop?
(d) If the plane was travelling at 80 m s–1 at the top of the loop, what would

the force of the seat on the pilot be?
(e) At what speed would the plane have to travel for the pilot to be just weight-

less at the top of the loop, that is, his weight equals the centripetal force?

A N G U L A R  V E L O C I T Y
When something completes one revolution it has gone through 360°. One revolution per 
second is the same as 360° per second. This is called its angular velocity.

In maths, you may have measured angles in radians. One radian (rad) is the angle when
the arc length is the same as the radius of the circle (Figure 5.19). There are 2π radians in 
a circle of 360°, thus one revolution equals 2π radians. Angular velocity (ω) is usually 

2002

3 × 10
v2
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v2

r

2002

1000
v2

r

122 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

mv2
max  = T – Fw, hence T = mv2

max + Fw = 70 × 2002 + 70 × 10 = 3500 N
r r 1000

600 m

aeroplane’s
path

r

θ

r

r

θ = 1 rad
1 rev = 2π rad

r

θ

r

r

Figure 5.18
For question 13.

Figure 5.19
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expressed in radians per second (rad s–1). It is a vector quantity. The symbol ω is the Greek
letter ‘omega’. The word radian comes from the Latin radius, meaning the spoke of a wheel.

Tangential velocity (v) = angular velocity (ω) × radius (r).

Centripetal acceleration and force can also be expressed in terms of angular velocity:

The period T of a rotating object is given by: ω = or T = .

— Why angular  veloci t ies?
You may wonder what the point of using angular velocities is. A spinning disc such as a CD
(Figure 5.20) will have all points on the surface turning at the same angular speed even
though different tracks will have different linear velocities. It makes the speed easier to state.
Another common way of expressing angular speeds is revolutions per minute (rpm). 
A microwave carousel does about 5 rpm.

Example 1
A tyre is turning at 20 m s–1 as a car travels along a road. If the diameter of the tyre is 62 cm,
calculate (a) the angular velocity of the tyre; (b) the centripetal acceleration of a 2 g stone
embedded in the tread of the tyre; (c) the centripetal force acting on the stone; (d) the rate
of rotation of the tyre in rpm.

Solution

(a) Radius = 0.31 m; ω = =  = 64.5 rad s–1.

(b) ac = = = 1290 m s–2.

(c) Fc = mac = 0.002 × 1290 = 2.58 N.

(d) 1 revolution = 2π radians; hence number of revolutions per second = 
= 10.2 rps = 616 rpm.

Example 2
A flywheel of radius 2.0 m is rotating at 120 rpm. Calculate (a) the angular velocity; (b) the
linear velocity of a point on the rim.

Solution

(a) 1 rpm = 2π rad min–1; hence 120 rpm = 120 × 2π rad min–1 = rad s–1

= 4π rad s–1.
(b) v = ωr = 4π × 2 = 25 m s–1.

— Everyday examples of  angular  mot ion
• Record players generally have three speeds: 78 rpm for the old bakelite 78s; 45 rpm

for vinyl singles and 33 rpm for LPs. As angular speeds were constant for any 
particular record, the outside track of a 12 inch (30 cm) LP travelled at a higher linear
speed than the inside track, so the outside track gave better sound reproduction. 
For instance, the outside track at a radius of 14.5 cm had a linear speed of 50 cm s–1,
whereas the inside track at a radius of 6.5 cm gave a linear speed of 22 cm s–1.

1
3

120 × 2π
60

64.5 rad s–1

2π

202

0.31
v2

r

20
0.31

v
r

2π
ω

2π
T
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v = ωr or ω = v
r

ac = v2
= ω2r = ωv and Fc = mv2

= mω2r
r r

direction ofrotation (1.2 m s–1)

Figure 5.20
An underside view of a CD showing the

objective lens of the laser pickup.

Photo 5.1
A tachometer. Note the ‘red line’ from 

5 to 7 thousand revs per minute.
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5.7

To overcome the problem of differential track speeds, when compact disc players
were developed the track speed was kept constant and the rotation speed was varied.
For example, the linear speed of a CD is about 1.2 m s–1, so for an outside track 
(radius 58mm), the rotation rate is 200 rpm, whereas for an inside track (r = 23 mm),
the rotation rate is 500 rpm (see Figure 5.20). Computer disk drives work on the
same principle.

• Car engines generally idle at about 800 rpm and cruise at somewhere between 2000 and
4000 rpm. Cars with V8 engines generally have more power and torque (turning force)
than either six or four cylinder cars so they can cruise at lower engine speeds. It is
unusual for car engines to rev above 6000 rpm because the valves and other components
can be damaged. Sportier cars are sometimes equipped with tachometers (Latin, tachy
= ‘swift’), which measure engine speeds in rpm. The maximum recommended speed is
indicated with a red line and if you ‘red-line’ an engine you are certainly giving it a
good thrashing. The power and torque delivered by engines is not constant over the 
full range of engine speeds (Figure 5.21). Cars are geared so that drivers can maintain
the engine speed just below the optimum power and torque range, which usually corre-
sponds to the normal cruising speed in top gear. For instance, a Toyota Landcruiser
with a 4.5 L, six cylinder petrol engine develops maximum power at 4600 rpm and
maximum torque at 3200 rpm. At a cruising speed of 100 km h–1, the engine turns
over at a relatively slow 2100 rpm, leaving plenty of revs in reserve for overtaking.

The same is true of motorcycles except that they run at much higher revs; a
range of 6000 rpm to a red line at 12 000 rpm is typical.

— Q u e s t i o n s
15 Calculate the force acting on a mass of 3 kg that is rotating at 5 rad s–1 in a 

circle of radius 30 cm.
16 A microwave oven carousel has a diameter of 40 cm and does one revolution in

12 seconds. Calculate (a) the angular velocity of the carousel; (b) the tangential
velocity.

17 While reading the fifth song on a CD, the laser pickup diode is at a radial distance
of 50 mm from the centre of the spinning disc. If the linear velocity of the disc
directly above the laser pickup is 1.2 m s–1, calculate the angular velocity in 
(a) rad s–1; (b) rpm.

S I M P L E  H A R M O N I C  M O T I O N
A swinging pendulum, a vibrating guitar string and a mass oscillating on the end of a spring
are all examples of periodic motion — motion in which an object continually moves back
and forth over the same path in equal time intervals (Figure 5.22). The word oscillate means
to move back and forth. It comes from the Latin os, meaning ‘mouth’ or ‘face’. The Greeks used
masks of the god Bacchus hung up as charms in vineyards and they swung back and forth in
the breeze, hence os-cillate.

Not all periodic motions are as simple as a mask blowing in the bleeze; some are very
complex. However, in this chapter we will look at a simple type of periodic motion called 
simple harmonic motion (SHM).

— The vibrat ing mass
Figure 5.23 shows a mass attached to a spring hooked to the ceiling. When it is at rest, the
tension in the spring and the weight are equal and opposite — or equally balanced. This 
position is called the equilibrium position (equi = ‘equal’, libra = ‘balance’). There is no net
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Figure 5.22
Three examples of periodic motion.
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force so the mass is not accelerating. The displacement of the mass from the equilibrium 
position is also called the amplitude (x) and is zero in this position.

If the mass is pulled down and let go it oscillates up and down as shown in Figure 5.24.
A study of the forces and displacements is quite revealing.

Table 5.2 summarises the variables involved.

Ta b l e  5 . 2

• Position 1 — the mass is moving downward through its equilibrium position so the
net force is zero but it is moving with maximum speed. As there is no net force, 
the acceleration must also be zero (Newton’s second law: F ∝ a).

• Position 2 — the mass is at its lowest point so displacement is a maximum in the
downward or negative direction. The spring is stretched so the tension in it is greater
than the weight of the object so the net force is directed upward (positive).
Acceleration is also directed up.

• Position 3 — the mass is back to its equilibrium position but is now moving with
maximum velocity upward.

• Position 4 — the spring is now unstretched so the tension in the spring is zero. The
only force comes from the weight so the net force is a maximum in the downward
(negative) direction. Displacement is a maximum in the positive direction.

• Position 5 — equilibrium, with the object moving down at maximum speed.
In summary:
• Simple harmonic motion (SHM) is periodic motion in which F ∝ –x.
• When the force (F) is a maximum, the displacement (x) is a maximum but in the

opposite direction.
• When the force is a minimum (zero), the displacement (x) is also a minimum (zero).
Mathematically:

The constant (k) is called the spring constant. Its units will be N m–1. The stiffer the spring
the larger the spring constant.
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Figure 5.24

N O V E L  C H A L L E N G E

A candle with a nail through the

middle is supported on two

glasses and lit at both sides.

How could you check if the 

resulting motion is SHM or 

just periodic?

Net force 0 max. up 0 max. down 0
Acceleration 0 max. up 0 max. down 0
Velocity max. down 0 max. up 0 max. down
Displacement 0 max. down 0 max. up 0

POSITION 1 POSITION 2 POSITION 3 POSITION 4 POSITION 5

F ∝ –x or F = –kx
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Example

When a mass of 2.0 kg is attached to a spring it stretches by 12 cm (Figure 5.25).
(a) Calculate the spring constant.
(b) What would the stretch be if a further 1.0 kg was added?

Solution

(a) F = –kx or k = – = – = 167 N m–1.

(b) x = = = 0.18 m = 18 cm.

Experiments show that if the spring is of negligible mass compared with the object hanging
on it, then the period (T ) of the motion is given by:

Example
A light spring has a mass of 100.0 g attached to it. If it has a spring constant of 4.5 N m–1,
calculate the period of the vibrating spring.

Solution

— Journey to  the centre of  the Earth
An idea that has intrigued people for years is a hole through the Earth. Imagine a hole from
Brisbane to London — it would be about 1.3 × 107 m long (Figure 5.26). If you dropped a
parcel in one end it would come out the other some time later. A 1 kg parcel dropped into the
hole at Brisbane would experience an initial force due to gravity of 10 N and would be pulled
to the centre of the Earth some 6.5 × 106 m away. SHM would apply and we could

calculate the force constant (k) = = = 1.5 × 10–6 N m–1.

Using the SHM formula: T = 2π
√ 

m
= 2π

√
1

= 5066 s (for one oscillation).
k 1.5 × 10–6

The time to get to the other side of the Earth would be half that or 2532 s (= 42 minutes).

— Q u e s t i o n s
18 What assumptions have been made in the above example about the hole through

the Earth that would make it an impossibility to achieve? List as many as you can.
19 A light spring has a mass of 200 g attached to it. When it is set oscillating, its

period is measured to be 1.2 s. Calculate its spring constant.

10
6.5 × 106

Fw

x

30
–167

F
–k

20
0.12

F
x
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2 kg

12 cm

Figure 5.25

√
T = 2π m

k

√ √
T = 2π m

= 2π 0.1000
= 0.93 s

k 4.5

London

Brisbane

Figure 5.26

N O V E L  C H A L L E N G E

A pendulum has a bucket for 

the bob and it is half-filled

|with water. When it freezes, 

predict what happens to the 

period of the pendulum.

bucket

water
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20 To measure the mass (M) of an astronaut in the weightless conditions of space,
an oscillating chair (mass m) bound to a spring is used. The body mass measuring
device (BMMD) has a period of oscillation of 0.901 49 s when no one is in it.
When one of the Skylab astronauts sat in it its period increased to 2.088 32 s. 
If the spring constant for the BMMD is 605.6 N m–1, calculate the mass of the
chair and of the astronaut.

— The pendulum
If you hang an apple on the end of a long thread fixed at its upper end, and then set it
swinging, you can see that the motion is periodic (see Figure 5.27). It is also simple harmonic
motion. Such an arrangement is called a pendulum (Latin pendulus = ‘swinging’). The weight
on the end is called the ‘bob’. Why ‘bob’? It comes from the Old French bober, meaning ‘to
mock’. When you mock someone your head moves up and down as you laugh.

As the pendulum, of length l, moves from A to B and back again to A, it makes a com-
plete oscillation. The time required is the period (T). The number of oscillations per second
is called its frequency (f). The sideways displacement (x) is the sideways distance from the
vertical or equilibrium position. The maximum displacement during the oscillations is called
the amplitude (amplus = ‘large’). The position C is called the equilibrium position. The forces
acting on a pendulum during its travel are shown in Figure 5.28.

At an angle of θ as shown, the restoring force is equal to the component of the weight 
(= mg) directed back to the equilibrium position (= mg sin θ). The tension in the string (T1)
is equal to the component (= mg cos θ). At the equilibrium position, the restoring force is
zero as θ equals zero and the component of the weight pulling the bob sideways is therefore
also zero (sin 0° = 0). The tension in the string (T2) is now equal to mg as cos 0° = 1. The
tension T2 is greater than T1.

— The pendulum formula
Experiments show that the period of a pendulum is given by:

Note that the period is independent of the mass of the bob and amplitude (if it is fairly small,
e.g. less than 20°) but as the graphs in Figure 5.29 show, T is proportional to √l .

Galileo is said to have confirmed that the period of a pendulum is independent of its
amplitude. He observed the gentle swaying of a sanctuary lamp in the cathedral at Pisa. Using
his pulse as a timer he found that successive oscillations were made in equal times, regard-
less of the amplitude. He later verified these observations in his laboratory.

The simple pendulum can be used to calculate g at any place by measuring T and l for a
pendulum oscillating at that place. Countless thousands of such measurements have been
made in the course of geophysical prospecting.

Example
The period of a simple pendulum 50.0 cm long is 1.42 s. Determine the acceleration due to
gravity at that location.

Solution
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mg

length
l

A

BC

θ

x

Figure 5.27

√
T = 2π l

g

T = 2π

√
l

, or T 2 = 4π2
l

g g

Hence g =
4π2l 

=
4π2 × 0.50 

= 9.79 m s–2
T2 1.422

mg cos θ

mg sin θ

mg

T2

T1

mg

pivot

θ

θ

Figure 5.28

T

I

T

    I

Figure 5.29
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A c t i v i t y  5 . 6 A  S P R I N G  P E N D U L U M
Make a pendulum out of a spring instead of a piece of string. Set it swinging and you’ll
soon see that T2 is greater than T1 as it bobs up and down as well as oscillating back and
forth. The motion is fascinating. It almost makes you go to sleep.

A c t i v i t y  5 . 7 T H E  S W E E T  S P O T
Any object that can vibrate like a pendulum is called a physical pendulum as distinct
from a simple pendulum, which is a bob on a string. A wooden ruler, a cricket bat and a
squash racquet can oscillate back and forth if allowed to pivot.

1 Suspend a metre ruler on a pin or nail through the hole in its end. Make sure it
can vibrate freely. Set it in motion and measure the time it takes to make 10
swings. Calculate its period (T) and then calculate the effective length (l) using
the pendulum formula. Assume g = 9.8 m s–2. Mark this distance on the ruler. 
It is probably at about the 60 cm mark. This is called the centre of oscillation or
centre of percussion (Latin percussio = ‘striking’). You’ll see why in the next part.

2 Repeat the above but use a cricket bat this time. Use two pins stuck into the
handle at a point where your main grip would be and suspend the bat between
the backs of two chairs. The pins can act as a pivot (Figure 5.30). Time it for 
10 swings and calculate the effective length. Mark the centre of percussion (P).
This is also called the ‘sweet spot’ because there is no sting in your hands if you
hit the ball at this point. If the ball hits at any other point, the bat rotates
about some other point than P, which accounts for the sting.

3 Try the same for a squash racquet. An effective length of 49 cm is common,
which puts the sweet spot right at the middle of the head area. However, why do
some world champion players hold their racquets where the grip joins the shaft?
The answer is that the racquet is not rigid but flexes like a guitar string about
the midpoint of the shaft while the end of the handle stays still. That’s where
they grip it to avoid the jarring. But designers also have to consider the power
centre — the point at which maximum power is transferred to the ball. This is
another complication that also applies to cricket, baseball and softball bats. 
This will be discussed further in Chapter 8, Momentum.

4 Over the past few years the sweet spot in tennis racquets has become higher up
the head of the racquet. As a result, players can reach higher for the ball when
they serve, opening up more of the opponent’s court. This is a huge advantage
because players can smack the ball that much harder instead of aiming carefully.
For example, the world’s fastest servers can now reach more than 200 km/h —
speeds that were unheard of several years ago. Commentators have argued that
speeds over 200 km/h are basically unplayable (and therefore boring) and that
tennis balls need a 20% diameter increase to slow the maximum speed to a
playable 180 km/h. If you can get hold of an old tennis racquet and a new one,
compare the position of the sweet spots by the pendulum method. Is the above
assertion correct?

— Q u e s t i o n s
21 Determine the period of a pendulum with a length of 67.2 cm at a place where 

(a) g = 9.81 m s–2;  (b) g = 9.78 m s–2.
22 (a) If you were accelerating upwards in a lift at 1.5 m s–2 what would the 

apparent acceleration due to gravity be?
(b) What would the period of oscillation of a 30 cm pendulum be in this lift?
(c) If the period of oscillation was 0.95 s, what acceleration upward would the

lift be undergoing?
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P

P

Figure 5.30
The ‘sweet spot’. The centre of 
percussion can be measured 
experimentally.

N O V E L  C H A L L E N G E

Two side-by-side pendulums 

are oscillating. One has a 

period of 6 s and the other a

period of 7 s.

If the bobs are touching at one

time, how much longer must you

wait until they come together

again?

N O V E L  C H A L L E N G E

You have been asked by your

employer to write an instruction

manual for a swing set in which

you have to explain how a user

can make it go higher.

What would you say? Now explain

the physics behind your 

instructions.
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5.8

123

S H M  A N D  C I R C U L A R  M O T I O N  C O M PA R E D
There is a very clear relationship between SHM and circular motion. Galileo was the first 
person to make observations in this respect. In 1610 he was using his newly constructed tele-
scope and discovered the four principal moons of Jupiter. Over weeks of observation, each
moon seemed to be moving back and forth past the planet in what we now call simple 
harmonic motion. This has been confirmed by plotting his data. But actually, the moons move
in an essentially constant circular motion around Jupiter. What Galileo saw — and what you
can see with a pair of binoculars — is this circular motion edge on, and they look as though
they are oscillating back-and-forth beside the planet.

— Observing the two mot ions together
If you could set a pendulum swinging above an object moving in a horizontal circle at con-
stant speed, you could get the two moving side-by-side if the speeds were right (Figure 5.31).

If a light was used to project an image of the oscillating objects on to a wall, the 
shadows of the two objects would move in exactly the same manner (Figure 5.32).

Consider point P making a complete revolution of the circle in Figure 5.32. The point P′
makes a complete oscillation on the straight line of the pendulum. Equally spaced points on
the circle project as points on the line as shown. This illustrates that maximum acceleration
occurs at the maximum amplitude of the pendulum, and minimum acceleration occurs when
the amplitude is a minimum. This is a characteristic of SHM.

In more formal language: Simple harmonic motion is the projection of uniform circular
motion on the diameter of the circle in which the circular motion occurs.

— P r a c t i c e  q u e s t i o n s
The relative difficulty of these questions is indicated by the number of stars beside each 
question number:  * = low; ** = medium; *** = high.

Review — applying principles and problem solving
*23 A boy sitting in a train carriage moving at constant velocity throws a ball

straight up in the air.
(a) Will the ball fall behind him, in front of him or into his hands?
(b) What happens if the train accelerates while the ball is in the air?
(c) What happens if the train turns a corner while the ball is in the air?

*24 A motorcycle is driven off a cliff at a horizontal velocity of 15 m s–1 and takes
2.5 seconds to reach the ground below. Calculate (a) the height of the cliff;
(b) the distance out from the base of the cliff that the motorcycle lands;
(c) the impact velocity.

*25 When a wedding ring is thrown horizontally out of a fifth floor window 15 m off
the ground, it lands 7.5 m out from the base of the building. Calculate (a) the
throwing speed; (b) the impact velocity; (c) how long the marriage will last.

*26 A golf ball is hit by a club and moves off with a velocity of 30 m s–1 at an angle
of 55° to the horizontal. Find the following:
(a) The initial vertical and horizontal components of the velocity.
(b) The maximum height reached.
(c) The time of flight.
(d) The horizontal range.
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*27 A soccerball is kicked off the ground at an angle of 20° to the horizontal. It
moves away at 30.0 m s–1. Calculate (a) the vertical velocity after 0.5 s; 
(b) the velocity of the ball after 1.0 s; (c) the maximum height reached; 
(d) the time of flight; (e) the range of the ball.

**28 The world record for fresh hen’s egg throwing is 96.90 m, set in 1981. Assuming
no air resistance, what would have been the (a) throwing speed; (b) elevation
angle; (c) maximum height; (d) time of flight?

*29 A car of mass 2250 kg is travelling around a circular track of radius 90 m at a
constant speed of 30 m s–1. Calculate (a) the centripetal acceleration; 
(b) the centripetal force; (c) what time it takes to complete one lap.

**30 An aviator, pulling out of a dive, follows the arc of a circle and is said to have
experienced 3 ‘g’s. Explain what this means.

*31 In the Bohr model of a hydrogen atom, an electron orbits a proton in a circle of
radius 5.28 × 10–11 m with a speed of 2.18 × 106 m s–1. What is the acceleration
of the electron in this model?

*32 Convert the following:
(a) 1 rad to degrees;
(b) 8.5 rad to degrees;
(c) 90° to rad;
(d) 5 rpm to rad s–1;
(e) 100 rad s–1 to rev per second;
(f) 2 revolutions of a 50 cm radius circle to metres;
(g) 20 rad s–1 of a 1.5 m radius circle to linear m s–1.

*33 An amusement park Ferris wheel moves in a horizontal circle of 15 m radius and
completes five turns every minute.
(a) What is the acceleration of a passenger at (i) the highest point; 

(ii) the lowest point?
(b) If the passenger has a mass of 65 kg, what would her apparent weight be at

these two points?
**34 The maximum breaking strain of a piece of cord is 250 N. What is the maximum

rpm at which the line can retain a 3 kg mass swung in a 1.8 m radius circle?
**35 A flywheel of radius 65 cm is rotating at 2000 rpm. Calculate (a) the angular

velocity; (b) the linear velocity of a point on the rim.
*36 A light spring stretches by 20 cm when a mass of 200 g is hung vertically from it.

(a) Calculate its spring constant.
(b) When it is set oscillating, what would be its period?
(c) What would be its frequency be?

*37 Determine the period of a pendulum with a length of 45.0 cm at a place where:
(a) g = 9.805 m s–2;  (b) 9.785 m s–2.

**38 When travelling upwards in a lift at constant speed a pendulum has a period of
1.30 s. When accelerating, however, the period becomes 1.22 s. Calculate
(a) the length of the pendulum; (b) the acceleration of the lift. 
Assume g = 9.8 m s–2.

**39 A centripetal force experiment was conducted to find relationships between
some of the variables.

Part A was conducted to determine the relationship between centripetal
force (Fc) and velocity (v) in horizontal circular motion. Using the experimental
set-up as shown in Figure 5.33, a rubber stopper was swung at constant speed in
a horizontal circle. The hanging mass, which provided the centripetal force, was
varied and the time for 10 complete revolutions of the rubber stopper was noted.
In all cases the radius of revolution (r) was kept at 1.5 m and the same rubber
stopper was used each time. The mass of the rubber stopper (ms) was 50 g.
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The results shown in Table 5.3 were obtained.

Ta b l e  5 . 3 C E N T R I P E TA L  F O R C E  D ATA  ( PA R T  A )

(a) Calculate the centripetal force (Fc) provided by the hanging mass for each
stage.

(b) Calculate the period (T) and the linear velocity (v) of the rubber stopper for
each stage.

(c) Plot Fc vs v using the x-axis for v.
(d) Suggest a possible relationship between Fc and v. Plot the appropriate data

to confirm or refute the suggested relationship. Does it agree with the 
centripetal force formula?

Part B Relationship between radius and velocity. The above experiment was
repeated with a 100 g rubber stopper. This time the hanging mass was kept 
constant at 100 g while the radius of revolution was varied. Again, the time for
10 revolutions was measured and the data recorded in Table 5.4.

Ta b l e  5 . 4 C E N T R I P E TA L  F O R C E  D ATA  ( PA R T  B )
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glass tube

sticky tape to
mark radius

mass carrier
and masses

rubber bob
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Figure 5.33
For question 39.

50 50 1.5 24.6
100 50 1.5 17.4
150 50 1.5 14.2
200 50 1.5 12.3
250 50 1.5 11.0

mh(g) ms(g) RADIUS (m) TIME FOR 10 REVOLUTIONS (s)

100 100 0.8 17.9
100 100 1.0 20.1
100 100 1.2 22.0
100 100 1.5 24.8

mh(g) ms(g) RADIUS (m) TIME FOR 10 REVOLUTIONS (s)
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(e) Calculate and plot r vs v using v for the x-axis again.
(f) Suggest a relationship and plot to confirm.
(g) Does it agree with the formula?
(h) What would the shape of an Fc vs r graph look like (r on the x-axis) if ms

and v were kept constant?
**40 An experiment was carried out to establish the relationship between length and

period of a simple pendulum. A brass bob was tied to a length of cotton thread
and as its length was increased, the time for 10 oscillations was noted. The
results are as follows:

Length (cm) 20.0 25.0 35.0 40.0 45.0
Time for 10 swings (s) 9.0 10.0 11.9 12.7 13.6

(a) Plot a graph to establish the possible relationship.
(b) Plot another graph to confirm the suggested relationship.
(c) From either graph, determine the time for 10 swings if the length was 

(i) 30.0 cm; (ii) 60 cm.
**41 The following data (Table 5.5) were taken from Overlander 4WD magazine’s road

test of some four wheel drives.

Ta b l e  5 . 5 F O U R  W H E E L  D R I V E  E N G I N E  D ATA

Comment critically on the following assertions by referring to the data.
(a) The bigger the engine capacity the greater the power and torque.
(b) Smaller capacity engines have to rev at a higher rate (rpm) for their 

maximum power and torque than do bigger engines.
(c) Engines have to turn at a higher rpm to get maximum power than they have

to for maximum torque.

Extension — complex, challenging and novel
***42 A dart is thrown horizontally towards a bull’s eye of a dart board but it strikes

the 3 on the bottom of the board directly underneath, 0.19 s later (Figure 5.34).
What is the distance from the bull’s eye to the 3?

***43 An arrow is fired off a 50 m cliff at an angle of 20° above the horizontal. If it
has an initial velocity of 35 m s–1 and strikes the rocks below, calculate 
(a) the time of flight; (b) the impact velocity; (c) how far out from the base 
of the cliff the arrow strikes the ground.

***44 In the 1968 Olympics in Mexico City, Bob Beamon shattered the world long jump
record with a jump of 8.90 m. His speed on take-off was measured at 9.5 m s–1,
about equal to that of a sprinter. How close did he come to achieving maximum
range for this speed in the absence of air resistance? The value of g in Mexico
City is 9.78 m s–2.

***45 A plane, diving at an angle of 53.0° to the vertical, releases a projectile at an
altitude of 730 m. The projectile hits the ground 4.50 s after being released
(Figure 5.35).
(a) What is the speed of the plane?
(b) How far did the projectile travel horizontally during its flight?
(c) What is the impact velocity?
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Capacity 4.477 L 3.528 L 2.972 L 4.169 L
Maximum power 158 kW 114 kW 109 kW 129 kW

at 4600 rpm at 4700 rpm at 5000 rpm at 4000 rpm
Maximum torque 373 Nm 271 Nm 234 Nm 330 Nm

at 3200 rpm at 3000 rpm at 4000 rpm at 3200 rpm
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Figure 5.34
For question 42.

53°

730 m

Figure 5.35
For question 45.
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***46 A person stands against the vertical walls of a cylindrical rotor in an amusement
park. As it rotates, she feels pressed against the walls of the rotor and she
remains suspended there as the floor moves away. The centripetal force is the
normal force with which the wall pushes on the person.
(a) If the rotor has a radius of 2.1 m and the coefficient of friction between the

person and the wall is 0.40, calculate the minimum speed of the rotor to
just keep the person suspended on the wall.

(b) If the person has a mass of 49 kg, calculate the centripetal force acting on
her.

***47 A pilot of mass 80 kg who has been diving his plane vertically downwards with a
velocity of 120 m s–1 pulls out of his dive by changing his course to a circular
path of radius 800 m. If he maintains his constant speed,
(a) what will be his maximum acceleration;
(b) if he can stand 4.5 g without blacking out, will he remain conscious;
(c) what is the maximum force that his seat exerts on him?

***48 For a simple pendulum undergoing four oscillations:
(a) Draw graphs showing the relationships between the following variables 

(i) displacement vs time; (ii) velocity vs time; (iii) acceleration vs time;
(iv) velocity (y-axis) vs displacement (x-axis). Remember that s, v and 
a are vector quantities so have + and – direction.

(b) Repeat the question above but this time imagine that the pendulum is
‘damped’, that is, friction causes it to slow down as it moves.

(c) The v vs s graph for damped motion is said to be a ‘strange attractor’. Look
up a book on chaos theory to find out what this means.

***49 A bullet of mass 10.0 g is fired into a ‘ballistic pendulum’ — a wooden block,
which has a mass of 1.000 kg. The wooden block is suspended from a string 
1.20 m long as shown in Figure 5.36. The bullet enters the stationary block and
remains embedded in it. Using the value of 9.80 m s–2 for g, calculate the period
of the pendulum.

***50 Courier-Mail correspondent Dave Barry wrote about an exciting new sport taking
off in Florida, USA. It’s called ’car bowling’ where you go up in an airplane and
drop bowling balls on cars. He wrote: ’Women think — ”You drop what, on what,
from what?” whereas men think “When can I do this?” You fly over an old car on
a private runway at 145 km/h at an altitude of 20 m and attempt to hit the car
with a bowling ball. The beauty of car bowling is that even if you miss, you get
to watch a bowling ball bounce along a runway. It’s amazing.’
(a) How far horizontally should you be from the car when you drop the ball?
(b) What would your ’sight angle’ be at this point? (Sight angle is the angle
between the line to the target and the vertical at the drop point) (c) Assume
that the impact angle on contact with the runway equals the launch angle after
contact, but with a 20% reduction in speed. Calculate (i) the maximum height
and (ii) the distance the ball travels before its next impact.
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Figure 5.36
The ballistic pendulum 

(for question 49).

T E S T  Y O U R  U N D E R S TA N D I N G

(Answer true or false)

• The period of a pendulum

depends on the amplitude.

• A pendulum accelerates

through the lowest part 

of its swing.

• An object moving in a circle

with constant speed has no

acceleration.

✔
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